HIGHER -THEORY OF FORMS I. FROM RINGS TO EXACT CATEGORIES

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTRODUCTION TO HIGHER CLUSTER CATEGORIES

In this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. We focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of Fomin and Reading, and colored quiver mutation.

متن کامل

Exact annihilating-ideal graph of commutative rings

The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.

متن کامل

an introduction to higher cluster categories

in this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. we focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of fomin and reading, and colored quiver mutation.

متن کامل

Nonrigid Group Theory of Water Clusters ( Cyclic Forms): (H2O)i for 2<=i<=6

The character table of the fully nonrigid water cluster (cyclic forms), (H_{2}O){_i}, with C{_ih} symmetry derived for the first time, for 2<=i <=6. The group of all feasible permutations is the wreath product of groups S{_i}[S{_2}] which consists of i!2i operations for i = 2, ..., 6 divided into ( w.r.t) 5, 10, 20, 36, 65 conjugacy classes and 5, 10, 20, 36, 65 irreducible representations resp...

متن کامل

an introduction to higher cluster categories

in this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. we focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of fomin and reading, and colored quiver mutation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Institute of Mathematics of Jussieu

سال: 2019

ISSN: 1474-7480,1475-3030

DOI: 10.1017/s1474748019000410